enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of steepest descent - Wikipedia

    en.wikipedia.org/wiki/Method_of_steepest_descent

    In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...

  3. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  4. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    — Provides compelling insight in 2 dimensions that at a minimizing point, the direction of steepest descent must be perpendicular to the tangent of the constraint curve at that point. "Lagrange multipliers – two variables". MIT Open Courseware (ocw.mit.edu) (Applet). Massachusetts Institute of Technology. "Lagrange multipliers".

  5. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    Plot of the Rosenbrock function of two variables. Here a = 1 , b = 100 {\displaystyle a=1,b=100} , and the minimum value of zero is at ( 1 , 1 ) {\displaystyle (1,1)} . In mathematical optimization , the Rosenbrock function is a non- convex function , introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for ...

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x 1, x 2, and x 3. This example shows one iteration of the gradient descent. Consider the nonlinear system of equations

  8. Stationary phase approximation - Wikipedia

    en.wikipedia.org/wiki/Stationary_phase_approximation

    with f(x) = ±x 2. The case with the minus sign is the complex conjugate of the case with the plus sign, so there is essentially one required asymptotic estimate. In this way asymptotics can be found for oscillatory integrals for Morse functions. The degenerate case requires further techniques (see for example Airy function).

  9. Simultaneous perturbation stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Simultaneous_perturbation...

    Simple experiments with p=2 showed that SPSA converges in the same number of iterations as FDSA. The latter follows approximately the steepest descent direction, behaving like the gradient method. On the other hand, SPSA, with the random search direction, does not follow exactly the gradient path.