enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.

  3. RKM code - Wikipedia

    en.wikipedia.org/wiki/RKM_code

    For brevity, the notation omits to always specify the unit (ohm or farad) explicitly and instead relies on implicit knowledge raised from the usage of specific letters either only for resistors or for capacitors, [nb 1] the case used (uppercase letters are typically used for resistors, lowercase letters for capacitors), [nb 2] a part's appearance, and the context.

  4. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The SI unit of capacitance is the farad (symbol: F), named after the English physicist Michael Faraday. [2] A 1 farad capacitor, when charged with 1 coulomb of electrical charge, has a potential difference of 1 volt between its plates. [3] The reciprocal of capacitance is called elastance.

  5. Capacitance multiplier - Wikipedia

    en.wikipedia.org/wiki/Capacitance_multiplier

    Here, the capacitance of capacitor C1 is multiplied by the ratio of resistances: C = C1 * R1 / R2 at the Vi node. [1] More advanced capacitance multiplier. The synthesized capacitance also brings a series resistance approximately equal to R2, and a leakage current appears across the capacitance because of the input offsets of OP.

  6. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI), equivalent to 1 coulomb per volt (C/V). [1] It is named after the English physicist Michael Faraday (1791–1867). In SI base units 1 F = 1 kg −1 ⋅m −2 ⋅s 4 ⋅A 2.

  7. Equivalent series resistance - Wikipedia

    en.wikipedia.org/wiki/Equivalent_series_resistance

    Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance. However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a resistance ; this resistance is defined as the equivalent series resistance ( ESR) [ 1 ] .

  8. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    An ideal capacitor is characterized by a constant capacitance C, in farads in the SI system of units, defined as the ratio of the positive or negative charge Q on each conductor to the voltage V between them: [23] = A capacitance of one farad (F) means that one coulomb of charge on each conductor causes a voltage of one volt across the device. [25]

  9. Analog delay line - Wikipedia

    en.wikipedia.org/wiki/Analog_delay_line

    A series of resistor–capacitor circuits (RC circuits) can be cascaded to form a delay. A long transmission line can also provide a delay element. The delay time of an analog delay line may be only a few nanoseconds or several milliseconds, limited by the practical size of the physical medium used to delay the signal and the propagation speed ...