Search results
Results from the WOW.Com Content Network
Lift is always accompanied by a drag force, which is the component of the surface force parallel to the flow direction. Lift is mostly associated with the wings of fixed-wing aircraft , although it is more widely generated by many other streamlined bodies such as propellers , kites , helicopter rotors , racing car wings , maritime sails , wind ...
The lift coefficient C L is defined by [2] [3] = =, where is the lift force, is the relevant surface area and is the fluid dynamic pressure, in turn linked to the fluid density, and to the flow speed.
Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics ...
Vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics.
F is downforce (SI unit: newtons) C L is the lift coefficient; ρ is air density (SI unit: kg/m 3) v is velocity (SI unit: m/s) A is the area of the wing (SI unit: meters squared), which depends on its wingspan and chord if using top wing area basis for C L, or the wingspan and thickness of the wing if using frontal area basis
An alternative perspective on lift and drag is gained from considering the change of momentum of the airflow. The wing intercepts the airflow and forces the flow to move downward. This results in an equal and opposite force acting upward on the wing which is the lift force.
Drag and lift coefficients for the NACA 63 3 618 airfoil. Full curves are lift, dashed drag; red curves have R e = 3·10 6, blue 9·10 6. Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot.
When lifting an object during a sub-sea operation, the DAF is calculated based on dynamic hydraulic forces or on snap-forces. [2] = Where: is the mass of the object in air (kg) is the acceleration of gravity (9.81m/s2)