Search results
Results from the WOW.Com Content Network
As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.
For each square, cells with the same colour (excluding grey) sum to the magic constant. Note *: The second requirement of most-perfect magic squares imply that any 2 cells that are 2 cells diagonally apart (including wraparound) sum to half the magic constant, hence any 2 such pairs also sum to the magic constant. Width: 100%: Height: 100%
Magic constant; Magic cube; Magic cube classes; Magic graph; Magic hexagon; Magic hexagram; Magic hypercube; Magic polygon; Magic series; Magic square; Magic star; Magic triangle (mathematics) Most-perfect magic square; Multimagic square; Number Scrabble; Pandiagonal magic square; Prime reciprocal magic square; Tic-tac-toe; Word square; User ...
In their book, Kathleen Ollerenshaw and David S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is a one-to-one correspondence between reversible squares and most-perfect magic squares. For n = 36, there are about 2.7 × 10 44 essentially different most-perfect magic squares.
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
Print/export Download as PDF; Printable version; In other projects ... Pages in category "Magic squares" The following 47 pages are in this category, out of 47 total.
The Siamese method, or De la Loubère method, is a simple method to construct any size of n-odd magic squares (i.e. number squares in which the sums of all rows, columns and diagonals are identical). The method was brought to France in 1688 by the French mathematician and diplomat Simon de la Loubère , [ 1 ] as he was returning from his 1687 ...
Start by creating a (2n+1)-by-(2n+1) square array consisting of n+1 rows of Ls, 1 row of Us, and; n-1 rows of Xs, and then exchange the U in the middle with the L above it. Each letter represents a 2x2 block of numbers in the finished square.