Search results
Results from the WOW.Com Content Network
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
Jean-Baptiste Joseph Fourier (/ ˈ f ʊr i eɪ,-i ər /; [1] French: [ʒɑ̃ batist ʒozɛf fuʁje]; 21 March 1768 – 16 May 1830) was a French mathematician and physicist born in Auxerre, Burgundy and best known for initiating the investigation of Fourier series, which eventually developed into Fourier analysis and harmonic analysis, and their applications to problems of heat transfer and ...
List of Fourier-related transforms; Fourier transform on finite groups; Fractional Fourier transform; Continuous Fourier transform; Fourier operator; Fourier inversion theorem; Sine and cosine transforms; Parseval's theorem; Paley–Wiener theorem; Projection-slice theorem; Frequency spectrum
We know that the solutions of a Sturm–Liouville problem form an orthogonal basis, and we know from Fourier series that this set of sinusoidal functions is an orthogonal basis. Since orthogonal bases are always maximal (by definition) we conclude that the Sturm–Liouville problem in this case has no other eigenvectors.
This was disproved by Paul du Bois-Reymond, who showed in 1876 that there is a continuous function whose Fourier series diverges at one point. The almost-everywhere convergence of Fourier series for L 2 functions was postulated by N. N. Luzin , and the problem was known as Luzin's conjecture (up until its proof by Carleson (1966)).
The problem whether the Fourier series of any continuous function converges almost everywhere was posed by Nikolai Lusin in the 1920s. It was resolved positively in 1966 by Lennart Carleson. His result, now known as Carleson's theorem, tells the Fourier expansion of any function in L 2 converges almost everywhere.
A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...
A closely related topic is the approximation of functions by generalized Fourier series, ... One problem of particular interest is that of approximating a function ...