Search results
Results from the WOW.Com Content Network
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...
Fourier transform, the type of linear canonical transform that is the generalization of the Fourier series; Fourier operator, the kernel of the Fredholm integral of the first kind that defines the continuous Fourier transform; Fourier inversion theorem, any one of several theorems by which Fourier inversion recovers a function from its Fourier ...
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
By applying Euler's formula (= + ), it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the ...
An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.
The lower right corner depicts samples of the DTFT that are computed by a discrete Fourier transform (DFT). The utility of the DTFT is rooted in the Poisson summation formula, which tells us that the periodic function represented by the Fourier series is a periodic summation of the continuous Fourier transform: [b]