Search results
Results from the WOW.Com Content Network
dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
The GCC development suite is available for several models of Casio, HP, and TI calculators, meaning that C, C++, Fortran 77, and inline assembly language can be used to develop a program on the computer side and then upload it to the calculator. Projects in development by third parties include on-board and/or computer-side converters ...
The following tables provide a comparison of computer algebra systems (CAS). [1] [2] [3] A CAS is a package comprising a set of algorithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language.
ND4J: N-dimensional arrays for the JVM [39] is a Java library for basic tensor operations and scientific computing. Tensor: computation for regular or unstructured multi-dimensional tensors. Scalar entries are either in numeric or exact precision. API inspired by Mathematica. Java 8 library in with no external dependencies.
Maple is a symbolic and numeric computing environment as well as a multi-paradigm programming language. It covers several areas of technical computing, such as symbolic mathematics, numerical analysis, data processing, visualization, and others. A toolbox, MapleSim, adds functionality for multidomain physical modeling and code generation.
Derive was a computer algebra system, developed as a successor to muMATH by the Soft Warehouse in Honolulu, Hawaii, now owned by Texas Instruments.Derive was implemented in muLISP [], also by Soft Warehouse.
The approximate number system (ANS) is a cognitive system that supports the estimation of the magnitude of a group without relying on language or symbols. The ANS is credited with the non-symbolic representation of all numbers greater than four, with lesser values being carried out by the parallel individuation system, or object tracking system. [1]