enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .

  3. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...

  4. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    Fitting of a noisy curve by an asymmetrical peak model () with parameters by mimimizing the sum of squared residuals () = at grid points , using the Gauss–Newton algorithm. Top: Raw data and model. Bottom: Evolution of the normalised sum of the squares of the errors.

  5. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized:

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Deming regression - Wikipedia

    en.wikipedia.org/wiki/Deming_regression

    In statistics, Deming regression, named after W. Edwards Deming, is an errors-in-variables model that tries to find the line of best fit for a two-dimensional data set. It differs from the simple linear regression in that it accounts for errors in observations on both the x- and the y- axis.

  8. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  9. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the Kendall robust line-fit method, [6] and the Kendall–Theil robust line. [7] It is named after Henri Theil and Pranab K. Sen , who published papers on this method in 1950 and 1968 respectively, [ 8 ] and after Maurice Kendall ...