enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word n-gram language model - Wikipedia

    en.wikipedia.org/wiki/Word_n-gram_language_model

    Syntactic n-grams are intended to reflect syntactic structure more faithfully than linear n-grams, and have many of the same applications, especially as features in a vector space model. Syntactic n-grams for certain tasks gives better results than the use of standard n-grams, for example, for authorship attribution. [12]

  3. n-gram - Wikipedia

    en.wikipedia.org/wiki/N-gram

    An n-gram is a sequence of n adjacent symbols in particular order. [1] The symbols may be n adjacent letters (including punctuation marks and blanks), syllables , or rarely whole words found in a language dataset; or adjacent phonemes extracted from a speech-recording dataset, or adjacent base pairs extracted from a genome.

  4. Google Books Ngram Viewer - Wikipedia

    en.wikipedia.org/wiki/Google_Books_Ngram_Viewer

    The program can search for a word or a phrase, including misspellings or gibberish. [5] The n-grams are matched with the text within the selected corpus, and if found in 40 or more books, are then displayed as a graph. [6] The Google Books Ngram Viewer supports searches for parts of speech and wildcards. [6] It is routinely used in research. [7 ...

  5. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The idea of skip-gram is that the vector of a word should be close to the vector of each of its neighbors. The idea of CBOW is that the vector-sum of a word's neighbors should be close to the vector of the word. In the original publication, "closeness" is measured by softmax, but the framework allows other ways to measure closeness.

  6. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    Based on word2vec skip-gram, Multi-Sense Skip-Gram (MSSG) [35] performs word-sense discrimination and embedding simultaneously, improving its training time, while assuming a specific number of senses for each word. In the Non-Parametric Multi-Sense Skip-Gram (NP-MSSG) this number can vary depending on each word.

  7. Katz's back-off model - Wikipedia

    en.wikipedia.org/wiki/Katz's_back-off_model

    The equation for Katz's back-off model is: [2] (+) = {+ (+) (+) (+) > + (+)where C(x) = number of times x appears in training w i = ith word in the given context. Essentially, this means that if the n-gram has been seen more than k times in training, the conditional probability of a word given its history is proportional to the maximum likelihood estimate of that n-gram.

  8. Kneser–Ney smoothing - Wikipedia

    en.wikipedia.org/wiki/Kneser–Ney_smoothing

    Kneser–Ney smoothing, also known as Kneser-Essen-Ney smoothing, is a method primarily used to calculate the probability distribution of n-grams in a document based on their histories. [1] It is widely considered the most effective method of smoothing due to its use of absolute discounting by subtracting a fixed value from the probability's ...

  9. Trigram - Wikipedia

    en.wikipedia.org/wiki/Trigram

    Trigrams are a special case of the n-gram, where n is 3. They are often used in natural language processing for performing statistical analysis of texts and in cryptography for control and use of ciphers and codes. See results of analysis of "Letter Frequencies in the English Language".