Search results
Results from the WOW.Com Content Network
In addition to their role in base excision repair, DNA glycosylase enzymes have been implicated in the repression of gene silencing in A. thaliana, N. tabacum and other plants by active demethylation. 5-methylcytosine residues are excised and replaced with unmethylated cytosines allowing access to the chromatin structure of the enzymes and ...
Single-strand selective monofunctional uracil DNA glycosylase is an enzyme that in humans is encoded by the SMUG1 gene. [ 4 ] [ 5 ] [ 6 ] SMUG1 is a glycosylase that removes uracil from single- and double-stranded DNA in nuclear chromatin, thus contributing to base excision repair .
The process is non-templated (unlike DNA transcription or protein translation); instead, the cell relies on segregating enzymes into different cellular compartments (e.g., endoplasmic reticulum, cisternae in Golgi apparatus). Therefore, glycosylation is a site-specific modification.
In biochemistry and molecular genetics, an AP site (apurinic/apyrimidinic site), also known as an abasic site, is a location in DNA (also in RNA but much less likely) that has neither a purine nor a pyrimidine base, either spontaneously or due to DNA damage. It has been estimated that under physiological conditions 10,000 apurinic sites and 500 ...
Uracil DNA glycosylase flips a uracil residue out of the duplex, shown in yellow. DNA glycosylases are responsible for initial recognition of the lesion. They flip the damaged base out of the double helix, as pictured, and cleave the N-glycosidic bond of the damaged base, leaving an AP site. There are two categories of glycosylases ...
Apurinic/apyrimidinic (AP) endonuclease is an enzyme that is involved in the DNA base excision repair pathway (BER). Its main role in the repair of damaged or mismatched nucleotides in DNA is to create a nick in the phosphodiester backbone of the AP site created when DNA glycosylase removes the damaged base.
NEIL1 is also capable of removing lesions from single-stranded DNA as well as from bubble and forked DNA structures. Because the expression of NEIL1 is cell-cycle dependent, and because it acts on forked DNA structures and interacts with PCNA and FEN-1 , it has been proposed that NEIL1 functions in replication associated DNA repair.
DNA repair mechanisms take on a vital role in maintaining the genomic integrity of cells from different organisms, in particular 3-Methyladenine DNA glycosylases are found in bacteria, yeast, plants, rodents, and humans. Therefore, there are different subfamilies of this enzyme, such as the Human Alkyladenine DNA Glycosylase (hAAG), that act on ...