Search results
Results from the WOW.Com Content Network
Liquid-liquid phase separation (LLPS) is well defined in the Biomolecular condensate page. LLPS databases cover different aspects of LLPS phenomena, ranging from cellular location of the Membraneless Organelles (MLOs) to the role of a particular protein/region forming the condensate state.
In biology the term 'condensation' is used much more broadly and can also refer to liquid–liquid phase separation to form colloidal emulsions or liquid crystals within cells, and liquid–solid phase separation to form gels, [1] sols, or suspensions within cells as well as liquid-to-solid phase transitions such as DNA condensation during ...
Phase separation is the creation of two distinct phases from a single homogeneous mixture. [1] The most common type of phase separation is between two immiscible liquids, such as oil and water. This type of phase separation is known as liquid-liquid equilibrium. Colloids are formed by phase separation, though not all phase separations forms ...
In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, [1] whereas adsorption is generally used to describe such partitioning ...
Isotope fractionation occurs during a phase transition, when the ratio of light to heavy isotopes in the involved molecules changes.When water vapor condenses (an equilibrium fractionation), the heavier water isotopes (18 O and 2 H) become enriched in the liquid phase while the lighter isotopes (16 O and 1 H) tend toward the vapor phase.
The Cahn–Hilliard equation (after John W. Cahn and John E. Hilliard) [1] is an equation of mathematical physics which describes the process of phase separation, spinodal decomposition, by which the two components of a binary fluid spontaneously separate and form domains pure in each component.
The free energy curve is plotted as a function of composition for a temperature below the convolute temperature, T. Equilibrium phase compositions are those corresponding to the free energy minima. Regions of negative curvature (∂ 2 f/∂c 2 < 0 ) lie within the inflection points of the curve (∂ 2 f/∂c 2 = 0 ) which are called the spinodes.
In liquid chromatography, the mobile phase velocity is taken as the exit velocity, that is, the ratio of the flow rate in ml/second to the cross-sectional area of the ‘column-exit flow path.’ For a packed column, the cross-sectional area of the column exit flow path is usually taken as 0.6 times the cross-sectional area of the column.