enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  3. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model [2] and the Abstract Hidden Markov Model. [3]

  4. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    A hidden Markov model describes the joint probability of a collection of "hidden" and observed discrete random variables.It relies on the assumption that the i-th hidden variable given the (i − 1)-th hidden variable is independent of previous hidden variables, and the current observation variables depend only on the current hidden state.

  5. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  6. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    A more recent example is the Markov switching multifractal model of Laurent E. Calvet and Adlai J. Fisher, which builds upon the convenience of earlier regime-switching models. [ 98 ] [ 99 ] It uses an arbitrarily large Markov chain to drive the level of volatility of asset returns.

  7. Latent and observable variables - Wikipedia

    en.wikipedia.org/wiki/Latent_and_observable...

    There exists a range of different model classes and methodology that make use of latent variables and allow inference in the presence of latent variables. Models include: linear mixed-effects models and nonlinear mixed-effects models; Hidden Markov models; Factor analysis; Item response theory; Analysis and inference methods include:

  8. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.

  9. Category:Hidden Markov models - Wikipedia

    en.wikipedia.org/wiki/Category:Hidden_Markov_models

    Layered hidden Markov model This page was last edited on 30 March 2013, at 04:46 (UTC). Text is available under the Creative Commons Attribution-ShareAlike 4.0 ...