Search results
Results from the WOW.Com Content Network
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic .
It can be used in calculating the sample size for a future study. When measuring differences between proportions, Cohen's h can be used in conjunction with hypothesis testing . A " statistically significant " difference between two proportions is understood to mean that, given the data, it is likely that there is a difference in the population ...
A related form are weights normalized to sum to sample size (n). These (non-negative) weights sum to the sample size (n), and their mean is 1. Any set of weights can be normalized to sample size by dividing each weight with the average of all weights.
where n is the sample size, and N is the population size. Using this procedure each element in the population has a known and equal probability of selection (also known as epsem). This makes systematic sampling functionally similar to simple random sampling (SRS). However, it is not the same as SRS because not every possible sample of a certain ...
The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with expectancy of n). When selecting items with replacement the selection procedure is to just draw one item at a time (like getting n draws from a multinomial distribution with N elements, each with their own ...
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]
In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap .