Search results
Results from the WOW.Com Content Network
of vaporization, Δ vap H o +42.3 ± 0.4 ... Excess volume of the mixture of ethanol and water (volume contraction) Heat of mixing of the mixture of ethanol and water
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
The August equation describes a linear relation between the logarithm of the pressure and the reciprocal temp. This assumes a temperature-independent heat of vaporization. The Antoine equation allows an improved, but still inexact description of the change of the heat of vaporization with the temperature.
In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1] The entropy of vaporization is defined as the ratio between the enthalpy of vaporization and the boiling temperature.
Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula CH 3 CH 2 OH. It is an alcohol, with its formula also written as C 2 H 5 OH, C 2 H 6 O or EtOH, where Et stands for ethyl. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like ...
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Another definition of the LHV is the amount of heat released when the products are cooled to 150 °C (302 °F). This means that the latent heat of vaporization of water and other reaction products is not recovered. It is useful in comparing fuels where condensation of the combustion products is impractical, or heat at a temperature below 150 ...