Search results
Results from the WOW.Com Content Network
For rectangular plates, Navier in 1820 introduced a simple method for finding the displacement and stress when a plate is simply supported. The idea was to express the applied load in terms of Fourier components, find the solution for a sinusoidal load (a single Fourier component), and then superimpose the Fourier components to get the solution ...
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
The maximum compressive stress is found at the uppermost edge of the beam while the maximum tensile stress is located at the lower edge of the beam. Since the stresses between these two opposing maxima vary linearly , there therefore exists a point on the linear path between them where there is no bending stress.
Normally, = / for a rectangular section. is a distributed load (force per length). is the displacement of the mid-surface in the -direction. is the angle of rotation of the normal to the mid-surface of the beam.
This cannot be accurate since the shear stress is known to be parabolic even for simple plate geometries. To account for the inaccuracy in the shear strain, a shear correction factor ( κ {\displaystyle \kappa } ) is applied so that the correct amount of internal energy is predicted by the theory.
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
Deformation of a thin plate highlighting the displacement, the mid-surface (red) and the normal to the mid-surface (blue) The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments.
Within this, there are articles that differentiate between the polar second moment of area, , and the torsional constant, , no longer using to describe the polar second moment of area. [ 4 ] In objects with significant cross-sectional variation (along the axis of the applied torque), which cannot be analyzed in segments, a more complex approach ...