Search results
Results from the WOW.Com Content Network
It stays relatively hot rich of stoichiometry because it contains its own oxidant. However, continual running of an engine on nitromethane will eventually melt the piston and/or cylinder because of this higher temperature. Effects of dissociation on adiabatic flame temperature. In real world applications, complete combustion does not typically ...
Flames of charcoal. A flame (from Latin flamma) is the visible, gaseous part of a fire.It is caused by a highly exothermic chemical reaction made in a thin zone. [1] When flames are hot enough to have ionized gaseous components of sufficient density, they are then considered plasma.
The autoignition temperature or self-ignition temperature, often called spontaneous ignition temperature or minimum ignition temperature (or shortly ignition temperature) and formerly also known as kindling point, of a substance is the lowest temperature at which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. [1]
The flames caused as a result of a fuel undergoing combustion (burning) Air pollution abatement equipment provides combustion control for industrial processes.. Combustion, or burning, [1] is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke.
2 O,out is the number of moles of water vaporized and n fuel,in is the number of moles of fuel combusted. [9] Most applications that burn fuel produce water vapor, which is unused and thus wastes its heat content. In such applications, the lower heating value must be used to give a 'benchmark' for the process.
The justification for using oxy-fuel is to produce a CO 2 rich flue gas ready for sequestration. Oxy-fuel combustion has significant advantages over traditional air-fired plants. Among these are: The mass and volume of the flue gas are reduced by approximately 75%. Because the flue gas volume is reduced, less heat is lost in the flue gas.
The creation of sparks from metals is based on the pyrophoricity of small metal particles, and pyrophoric alloys are made for this purpose. [2] Practical applications include the sparking mechanisms in lighters and various toys, using ferrocerium; starting fires without matches, using a firesteel; the flintlock mechanism in firearms; and spark testing ferrous metals.
The gas burner has many applications such as soldering, brazing, and welding, the latter using oxygen instead of air for producing a hotter flame, which is required for melting steel. Chemistry laboratories use natural-gas fueled Bunsen burners. In domestic and commercial settings gas burners are commonly used in gas stoves and cooktops.