Search results
Results from the WOW.Com Content Network
Statistical hypothesis testing is considered a mature area within statistics, [26] but a limited amount of development continues. An academic study states that the cookbook method of teaching introductory statistics leaves no time for history, philosophy or controversy. Hypothesis testing has been taught as received unified method.
Neyman-Pearson hypothesis testing made significant contributions to decision theory, which is widely employed, particularly in statistical quality control. Hypothesis testing also extended its applicability to incorporate prior probabilities, giving it a Bayesian character.
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.
In short, a hypothesis is testable if there is a possibility of deciding whether it is true or false based on experimentation by anyone. This allows anyone to decide whether a theory can be supported or refuted by data. However, the interpretation of experimental data may be also inconclusive or uncertain.
Neyman–Pearson lemma [5] — Existence:. If a hypothesis test satisfies condition, then it is a uniformly most powerful (UMP) test in the set of level tests.. Uniqueness: If there exists a hypothesis test that satisfies condition, with >, then every UMP test in the set of level tests satisfies condition with the same .
The hypothetico-deductive model or method is a proposed description of the scientific method.According to it, scientific inquiry proceeds by formulating a hypothesis in a form that can be falsifiable, using a test on observable data where the outcome is not yet known.
A statistical significance test is intended to test a hypothesis. If the hypothesis summarizes a set of data, there is no value in testing the hypothesis on that set of data. Example: If a study of last year's weather reports indicates that rain in a region falls primarily on weekends, it is only valid to test that null hypothesis on weather ...
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.