Search results
Results from the WOW.Com Content Network
In animals, non-motile primary cilia are found on nearly every type of cell, blood cells being a prominent exception. [2] Most cells only possess one, in contrast to cells with motile cilia, an exception being olfactory sensory neurons, where the odorant receptors are located, which each possess about ten cilia. Some cell types, such as retinal ...
Dyneins are a family of cytoskeletal motor proteins (though they are actually protein complexes) that move along microtubules in cells. They convert the chemical energy stored in ATP to mechanical work. Dynein transports various cellular cargos, provides forces and displacements important in mitosis, and drives the beat of eukaryotic cilia and ...
Cilia Structure. Primary cilia are found to be formed when a cell exits the cell cycle. [2] Cilia consist of four main compartments: the basal body at the base, the transition zone, the axenome which is an arrangement of nine doublet microtubules and considered to be the core of the cilium, and the ciliary membrane. [2]
This allows the cilia to penetrate the mucous layer during its full extension in the effector stroke, and to propel the mucus directionally, away from the cell surface. [14] [16] In the recovery stroke the cilium bends from one end to the other bringing it back to the starting point for the next power stroke. [16]
Axonal transport, also called axoplasmic transport or axoplasmic flow, is a cellular process responsible for movement of mitochondria, lipids, synaptic vesicles, proteins, and other organelles to and from a neuron's cell body, through the cytoplasm of its axon called the axoplasm. [1]
One key distinction between cellular processes and lamellipodia lies in the composition of their cytoskeletal elements. While cellular processes can be supported by any of the three major components of the cytoskeleton— microfilaments ( actin filaments ), intermediate filaments (IFs), or microtubules —, lamellipodia are primarily driven by ...
Cilia performs powerful forward strokes with a stiffened flagellum followed by relatively slow recovery movement with a relaxed flagellum. In contrast to flagellates, propulsion of ciliates derives from the motion of a layer of densely-packed and collectively-moving cilia, which are short hair-like flagella covering their bodies.
One kinocilium is the longest cilium located on the hair cell next to 40–70 stereocilia. During movement of the body, the hair cell is depolarized when the stereocilia move toward the kinocilium. The depolarization of the hair cell causes neurotransmitter to be released and an increase in firing frequency of cranial nerve VIII. When the ...