Search results
Results from the WOW.Com Content Network
For a certain water depth, surface gravity waves – i.e. waves occurring at the air–water interface and gravity as the only force restoring it to flatness – propagate faster with increasing wavelength. On the other hand, for a given (fixed) wavelength, gravity waves in deeper water have a larger phase speed than in shallower water. [1]
He found the energy transfer from the wind to the water surface is proportional to the curvature of the velocity profile of the wind at the point where the mean wind speed is equal to the wave speed. Since the wind speed profile is logarithmic to the water surface, the curvature has a negative sign at this point.
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.
Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
where E is the energy of the wave, ħ is the reduced Planck constant, and c is the speed of light in a vacuum. For the special case of a matter wave, for example an electron wave, in the non-relativistic approximation (in the case of a free particle, that is, the particle has no potential energy):
Water vapor concentration for this gas mixture is 0.4%. Water vapor is a greenhouse gas in the Earth's atmosphere, responsible for 70% of the known absorption of incoming sunlight, particularly in the infrared region, and about 60% of the atmospheric absorption of thermal radiation by the Earth known as the greenhouse effect. [25]
deep water – for a water depth larger than half the wavelength, h > 1 / 2 λ, the phase speed of the waves is hardly influenced by depth (this is the case for most wind waves on the sea and ocean surface), [9] shallow water – for a water depth smaller than 5% of the wavelength, h < 1 / 20 λ, the phase speed of the waves is ...
For a depth of four kilometres, the wave speed, , is about 200 metres per second, but for the first baroclinic mode in the ocean, a typical phase speed would be about 2.8 m/s, causing an equatorial Kelvin wave to take 2 months to cross the Pacific Ocean between New Guinea and South America; for higher ocean and atmospheric modes, the phase ...