Search results
Results from the WOW.Com Content Network
Hydrolase enzymes are important for the body because they have degradative properties. In lipids, lipases contribute to the breakdown of fats and lipoproteins and other larger molecules into smaller molecules like fatty acids and glycerol. Fatty acids and other small molecules are used for synthesis and as a source of energy. [1]
Catalase has one of the highest turnover numbers of all enzymes; one catalase molecule can convert millions of hydrogen peroxide molecules to water and oxygen each second. [ 6 ] Catalase is a tetramer of four polypeptide chains, each over 500 amino acids long. [ 7 ]
A common kind of hydrolysis occurs when a salt of a weak acid or weak base (or both) is dissolved in water. Water spontaneously ionizes into hydroxide anions and hydronium cations. The salt also dissociates into its constituent anions and cations. For example, sodium acetate dissociates in water into sodium and acetate ions.
The sodium–potassium pump, a critical enzyme for regulating sodium and potassium levels in cells. Sodium ions (Na +) are necessary in small amounts for some types of plants, [1] but sodium as a nutrient is more generally needed in larger amounts [1] by animals, due to their use of it for generation of nerve impulses and for maintenance of electrolyte balance and fluid balance.
An enzyme is a substance that acts as a catalyst in living organisms which helps to speed up chemical reactions. [12] Carbonic anhydrase is one important enzyme that is found in red blood cells, gastric mucosa, pancreatic cells, and even renal tubules. It was discovered in the year 1932 and it has been categorized into three general classes. [13]
Salt compounds dissociate in aqueous solutions. This property is exploited in the process of salting out. When the salt concentration is increased, some of the water molecules are attracted by the salt ions, which decreases the number of water molecules available to interact with the charged part of the protein. [3]
In biochemistry, enzymatic hydrolysis is a process in which enzymes facilitate the cleavage of bonds in molecules with the addition of the elements of water (i.e. hydrolysis). It plays an important role in the digestion of food. [1] It may be used to help provide renewable energy, as with cellulosic ethanol. [2]
The conversion of the amino acid glutamine to α-ketoglutarate takes place in two reaction steps: Conversion of glutamine to α-ketoglutarate. 1. Hydrolysis of the amino group of glutamine yielding glutamate and ammonium. Catalyzing enzyme: glutaminase (EC 3.5.1.2) 2. Glutamate can be excreted or can be further metabolized to α-ketoglutarate.