Search results
Results from the WOW.Com Content Network
The Collatz conjecture is: This process will eventually reach the number 1, regardless of which positive integer is chosen initially. That is, for each , there is some with . If the conjecture is false, it can only be because there is some starting number which gives rise to a sequence that does not contain 1.
t. e. The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem. The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved ...
One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes.”. You check this in your ...
Riemann hypothesis. This plot of Riemann's zeta (ζ) function (here with argument z) shows trivial zeros where ζ (z) = 0, a pole where ζ (z) = , the critical line of nontrivial zeros with Re (z) = 1/2 and slopes of absolute values. In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The following are the headers for Hilbert's 23 problems as they appeared in the 1902 translation in the Bulletin of the American Mathematical Society. [1] 1. Cantor's problem of the cardinal number of the continuum. 2. The compatibility of the arithmetical axioms. 3. The equality of the volumes of two tetrahedra of equal bases and equal altitudes.
Fermat–Catalan conjecture. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many ...
e. In the mathematical field of geometric topology, the Poincaré conjecture (UK: / ˈpwæ̃kæreɪ /, [2] US: / ˌpwæ̃kɑːˈreɪ /, [3][4] French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by Henri Poincaré in ...