Search results
Results from the WOW.Com Content Network
Equivalent statement 2: x n + y n = z n, where integer n ≥ 3, has no non-trivial solutions x, y, z ∈ Q. This is because the exponents of x, y, and z are equal (to n), so if there is a solution in Q, then it can be multiplied through by an appropriate common denominator to get a solution in Z, and hence in N.
In this case, both x and y are odd and z is even. Since (y 2, z, x 2) form a primitive Pythagorean triple, they can be written z = 2de y 2 = d 2 − e 2 x 2 = d 2 + e 2. where d and e are coprime and d > e > 0. Thus, x 2 y 2 = d 4 − e 4. which produces another solution (d, e, xy) that is smaller (0 < d < x). As before, there must be a lower ...
In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes. For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...
The violet is the mutual information . In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as .
Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy have the same sign there. Therefore, the second condition, that f xx be greater (or less) than zero, could equivalently be that f yy or tr(H) = f xx + f yy be greater (or less ...
Visual proof that (x + y)2 ≥ 4xy. Taking square roots and dividing by two gives the AM–GM inequality. [1] In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, it is possible to expand the polynomial (x + y) n into a sum involving terms of the form ax b y c, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending ...
[2] [3] Through her attempts to solve Fermat's Last Theorem, Germain developed a result now known as Germain's Theorem which states that if p is an odd prime and 2p + 1 is also prime, then p must divide x, y, or z. Otherwise, +. This case where p does not divide x, y, or z is called the