Search results
Results from the WOW.Com Content Network
In Bayesian model comparison, the model with the highest posterior probability given the data is selected. The posterior probability of a model depends on the evidence, or marginal likelihood, which reflects the probability that the data is generated by the model, and on the prior belief of the model.
A marginal likelihood is a likelihood function that has been integrated over the parameter space.In Bayesian statistics, it represents the probability of generating the observed sample for all possible values of the parameters; it can be understood as the probability of the model itself and is therefore often referred to as model evidence or simply evidence.
Devising a good model for the data is central in Bayesian inference. In most cases, models only approximate the true process, and may not take into account certain factors influencing the data. [2] In Bayesian inference, probabilities can be assigned to model parameters. Parameters can be represented as random variables. Bayesian inference uses ...
Bayesian probability (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation [2] representing a state of knowledge [3] or as quantification of a personal belief.
In Bayesian statistics, the posterior probability is the probability of the parameters given the evidence , and is denoted (|). It contrasts with the likelihood function , which is the probability of the evidence given the parameters: p ( X | θ ) {\displaystyle p(X|\theta )} .
One of Bayes' theorem's many applications is Bayesian inference, an approach to statistical inference, where it is used to invert the probability of observations given a model configuration (i.e., the likelihood function) to obtain the probability of the model configuration given the observations (i.e., the posterior probability).
The model evidence captures in a single number how well such a model explains the observations. The model evidence of the Bayesian linear regression model presented in this section can be used to compare competing linear models by Bayesian model comparison. These models may differ in the number and values of the predictor variables as well as ...
The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. [1] The models in question can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation.