enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.

  3. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This theorem is an immediate consequence of the higher dimensional chain rule given above, and it has exactly the same formula. The chain rule is also valid for Fréchet derivatives in Banach spaces.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  5. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The derivative of arctan x is 1 / (1 + x 2); conversely, the integral of 1 / (1 + x 2) is arctan x.

  6. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Identity 1: ⁡ + ⁡ = The following two results follow from this and the ratio identities. To obtain the first, divide both sides of ⁡ + ⁡ = by ⁡; for the second, divide by ⁡.

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of the function given by () = + ⁡ ⁡ + is ′ = + ⁡ (⁡) ⁡ () + = + ⁡ ⁡ (). Here the second term was computed using the chain rule and the third term using the product rule. The known derivatives of the elementary functions , , ⁡ (), ⁡ (), and ⁡ =, as well as the constant , were also used.

  9. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships: [ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc ...