Search results
Results from the WOW.Com Content Network
The impulse delivered by a varying force is the integral of the force F with respect to time: =. The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s).
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]
and the cross-product is a pseudovector i.e. if r and p are reversed in direction (negative), L is not. In general I is an order-2 tensor, see above for its components. The dot · indicates tensor contraction. Force and Newton's 2nd law: Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:
The time derivative of the momentum is =, which, upon identifying the negative derivative of the potential with the force, is just Newton's second law once again. [ 60 ] [ 9 ] : 742 As in the Lagrangian formulation, in Hamiltonian mechanics the conservation of momentum can be derived using Noether's theorem, making Newton's third law an idea ...
The graph of the Dirac delta is usually thought of as following the whole x-axis and the positive y-axis. [5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
If the net force experienced by a particle changes as a function of time, F(t), the change in momentum (or impulse J) between times t 1 and t 2 is = = (). Impulse is measured in the derived units of the newton second (1 N⋅s = 1 kg⋅m/s) or dyne second (1 dyne⋅s = 1 g⋅cm/s)
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...