Search results
Results from the WOW.Com Content Network
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
3-SAT is NP-complete (like any other k-SAT problem with k>2) while 2-SAT is known to have solutions in polynomial time. As a consequence, [ f ] the task of converting a formula into a DNF , preserving satisfiability, is NP-hard ; dually , converting into CNF, preserving validity , is also NP-hard; hence equivalence-preserving conversion into ...
In contrast, no renaming of (x 1 ∨ ¬x 2 ∨ ¬x 3) ∧ (¬x 1 ∨ x 2 ∨ x 3) ∧ ¬x 1 leads to a Horn formula. Checking the existence of such a replacement can be done in linear time; therefore, the satisfiability of such formulae is in P as it can be solved by first performing this replacement and then checking the satisfiability of the ...
fps 2: ≡ 1 ft/s 2 = 3.048 × 10 −1 m/s 2: gal; galileo: Gal ≡ 1 cm/s 2 = 10 −2 m/s 2: inch per minute per second: ipm/s ≡ 1 in/(min⋅s) = 4.2 3 × 10 −4 m/s 2: inch per second squared: ips 2: ≡ 1 in/s 2 = 2.54 × 10 −2 m/s 2: knot per second: kn/s ≡ 1 kn/s ≈ 5.1 4 × 10 −1 m/s 2: metre per second squared (SI unit) m/s 2 ...
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.
The Boolean satisfiability problem on conjunctive normal form formulas is NP-complete. By the duality principle, so is the falsifiability problem on DNF formulas. Therefore, it is co-NP-hard to decide if a DNF formula is a tautology. Conversely, a DNF formula is satisfiable if, and only if, one of its conjunctions is satisfiable.
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin
If each x satisfying can be used to construct a y satisfying but no such y can be constructed without knowledge of such an x then formula (1) will not be equivalent to formula (2). The rules for converting a formula to prenex form that do fail in intuitionistic logic are: (1) () implies (), (2) () implies (),