enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_vector_autoregression

    A typical example is the shrinkage prior, proposed by Robert Litterman (1979) [3] [4] and subsequently developed by other researchers at University of Minnesota, [5] [6] (i.e. Sims C, 1989), which is known in the BVAR literature as the "Minnesota prior".

  3. Maximum a posteriori estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_a_posteriori...

    An estimation procedure that is often claimed to be part of Bayesian statistics is the maximum a posteriori (MAP) estimate of an unknown quantity, that equals the mode of the posterior density with respect to some reference measure, typically the Lebesgue measure.

  4. Prior probability - Wikipedia

    en.wikipedia.org/wiki/Prior_probability

    An informative prior expresses specific, definite information about a variable. An example is a prior distribution for the temperature at noon tomorrow. A reasonable approach is to make the prior a normal distribution with expected value equal to today's noontime temperature, with variance equal to the day-to-day variance of atmospheric temperature, or a distribution of the temperature for ...

  5. Laplace's approximation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_approximation

    where ^ is the location of a mode of the joint target density, also known as the maximum a posteriori or MAP point and is the positive definite matrix of second derivatives of the negative log joint target density at the mode = ^. Thus, the Gaussian approximation matches the value and the log-curvature of the un-normalised target density at the ...

  6. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    After the arrival of new information, the current posterior probability may serve as the prior in another round of Bayesian updating. [ 3 ] In the context of Bayesian statistics , the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data.

  7. Jeffreys prior - Wikipedia

    en.wikipedia.org/wiki/Jeffreys_prior

    In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys , [ 1 ] its density function is proportional to the square root of the determinant of the Fisher information matrix:

  8. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  9. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...