enow.com Web Search

  1. Ad

    related to: cross section of a polyhedron formula worksheet grade

Search results

  1. Results from the WOW.Com Content Network
  2. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    In analogy with the cross-section of a solid, the cross-section of an n-dimensional body in an n-dimensional space is the non-empty intersection of the body with a hyperplane (an (n − 1)-dimensional subspace). This concept has sometimes been used to help visualize aspects of higher dimensional spaces. [7]

  3. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron. [2] Any convex polyhedron's surface has Euler characteristic = + = . This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4]

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A central cross section of a regular tetrahedron is a square. The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny.

  5. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface.

  6. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    A polyhedron with 2n kite faces around an axis, with half offsets tetragonal trapezohedron: Cone: Tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex: A right circular cone and an oblique circular cone Cylinder: Straight parallel sides and a circular or oval cross section

  7. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  8. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    Any convex polyhedron's surface has Euler characteristic + =, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces.

  9. Prismatoid - Wikipedia

    en.wikipedia.org/wiki/Prismatoid

    Prismatoid with parallel faces A 1 and A 3, midway cross-section A 2, and height h. In geometry, a prismatoid is a polyhedron whose vertices all lie in two parallel planes.Its lateral faces can be trapezoids or triangles. [1]

  1. Ad

    related to: cross section of a polyhedron formula worksheet grade