Search results
Results from the WOW.Com Content Network
In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...
A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1]
Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.
For some functions, the image and the codomain coincide; these functions are called surjective or onto. For example, consider the function () =, which inputs a real number and outputs its double. For this function, both the codomain and the image are the set of all real numbers, so the word range is unambiguous.
Mathematical statistics is the application of probability theory and other mathematical concepts to statistics, as opposed to techniques for collecting statistical data. [1] Specific mathematical techniques that are commonly used in statistics include mathematical analysis , linear algebra , stochastic analysis , differential equations , and ...
In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).
In category theory, an epimorphism is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms g 1, g 2: Y → Z, = =. Epimorphisms are categorical analogues of onto or surjective functions (and in the category of sets the concept corresponds exactly to the surjective functions), but they may not exactly coincide in all contexts; for example, the ...
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when f is the identity function, the equality f ( x ) = x is true for all values of x to which f can be applied.