Search results
Results from the WOW.Com Content Network
Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and possibly other operations analogous to the boolean operators; there are also bit shifts and operations to count ones and zeros, find high and low one or zero, set, reset and test bits, extract and insert fields, mask and zero fields, gather and ...
Algorithms are given as formulas for any number of bits, the examples usually for 32 bits. Apart from the introduction, chapters are independent of each other, each focusing on a particular subject. Many algorithms in the book depend on two's complement integer numbers. The subject matter of the second edition of the book [1] includes ...
Thus, if both bits in the compared position are 1, the bit in the resulting binary representation is 1 (1 × 1 = 1); otherwise, the result is 0 (1 × 0 = 0 and 0 × 0 = 0). For example: 0101 (decimal 5) AND 0011 (decimal 3) = 0001 (decimal 1) The operation may be used to determine whether a particular bit is set (1) or cleared (0). For example ...
When the data word is divided into 32-bit blocks, two 32-bit sums result and are combined into a 64-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then ...
13789 722341 (mod 2345) = 2029 would take a very long time and much storage space if the naïve method of computing 13789 722341 and then taking the remainder when divided by 2345 were used. Even using a more effective method will take a long time: square 13789, take the remainder when divided by 2345, multiply the result by 13789, and so on.
PEXT copies selected bits from the source to contiguous low-order bits of the destination; higher-order destination bits are cleared. PDEP does the opposite for the selected bits: contiguous low-order bits are copied to selected bits of the destination; other destination bits are cleared. This can be used to extract any bitfield of the input ...
For 8-bit integers the table of quarter squares will have 2 9 −1=511 entries (one entry for the full range 0..510 of possible sums, the differences using only the first 256 entries in range 0..255) or 2 9 −1=511 entries (using for negative differences the technique of 2-complements and 9-bit masking, which avoids testing the sign of ...
xy plot where x = x 0 ∈ [0, 1] is rational and y = x n for all n. The dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map [1] [2]) is the mapping (i.e., recurrence relation)