enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  3. Speeds of sound of the elements - Wikipedia

    en.wikipedia.org/wiki/Speeds_of_sound_of_the...

    The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]

  4. Sound velocity probe - Wikipedia

    en.wikipedia.org/wiki/Sound_Velocity_Probe

    This instrument can determine the salinity, temperature and pressure variables, and then calculate the sound velocity of the water using one of the many formulae available. [2] Secondly, the speed of sound may be directly measured using a small acoustic transducer and a reflecting surface, mounted at a known distance from the acoustic center of ...

  5. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    Those physical properties and the speed of sound change with ambient conditions. For example, the speed of sound in gases depends on temperature. In 20 °C (68 °F) air at sea level, the speed of sound is approximately 343 m/s (1,230 km/h; 767 mph) using the formula v [m/s] = 331 + 0.6 T [°C].

  6. Sound speed profile - Wikipedia

    en.wikipedia.org/wiki/Sound_speed_profile

    Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.

  7. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  8. Mach number - Wikipedia

    en.wikipedia.org/wiki/Mach_number

    At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic). An F/A-18 Hornet creating a vapor cone at transonic speed just before reaching the speed of sound. The local speed of sound, and hence the Mach number, depends on the temperature of the surrounding gas.

  9. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield.