Search results
Results from the WOW.Com Content Network
Another example of a scale-invariant classical field theory is the massless scalar field (note that the name scalar is unrelated to scale invariance). The scalar field, φ(x, t) is a function of a set of spatial variables, x, and a time variable, t. Consider first the linear theory.
Measurement invariance or measurement equivalence is a statistical property of measurement that indicates that the same construct is being measured across some specified groups. [1] For example, measurement invariance can be used to study whether a given measure is interpreted in a conceptually similar manner by respondents representing ...
A scalar function that depends entirely on the principal invariants of a tensor is objective, i.e., independent of rotations of the coordinate system. This property is commonly used in formulating closed-form expressions for the strain energy density , or Helmholtz free energy , of a nonlinear material possessing isotropic symmetry.
For example, in D = 4, only g 4 is classically dimensionless, and so the only classically scale-invariant scalar field theory in D = 4 is the massless φ 4 theory. Classical scale invariance, however, normally does not imply quantum scale invariance, because of the renormalization group involved – see the discussion of the beta function below.
The Kretschmann scalar and the Chern-Pontryagin scalar. where is the left dual of the Riemann tensor, are mathematically analogous (to some extent, physically analogous) to the familiar invariants of the electromagnetic field tensor
A scalar (also called type-0 or rank-0 tensor) is an object that does not vary with the change in basis. An example of a physical observable that is a scalar is the mass of a particle. The single, scalar value of mass is independent to changes in basis vectors and consequently is called invariant .
In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions [2] to argue that it should appear in nature.
In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the ...