Ads
related to: 3 coordinate axis math problems practice questions 3rd level mapgenerationgenius.com has been visited by 10K+ users in the past month
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- Teachers Try it Free
Search results
Results from the WOW.Com Content Network
A sphere in 3-space (also called a 2-sphere because it is a 2-dimensional object) consists of the set of all points in 3-space at a fixed distance r from a central point P. The solid enclosed by the sphere is called a ball (or, more precisely a 3-ball). The volume of the ball is given by
The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...
A rotation R around axis u can be decomposed using 3 endomorphisms P, (I − P), and Q (click to enlarge). Given a 3 × 3 rotation matrix R, a vector u parallel to the rotation axis must satisfy =, since the rotation of u around the rotation axis must result in u.
When comparing the symmetry type of two objects, the origin is chosen for each separately, i.e., they need not have the same center. Moreover, two objects are considered to be of the same symmetry type if their symmetry groups are conjugate subgroups of O(3) (two subgroups H 1, H 2 of a group G are conjugate, if there exists g ∈ G such that H 1 = g −1 H 2 g).
The group SO(3) can therefore be identified with the group of these matrices under matrix multiplication. These matrices are known as "special orthogonal matrices", explaining the notation SO(3). The group SO(3) is used to describe the possible rotational symmetries of an object, as well as the possible orientations of an object in space.
In mathematics, a rotating body is commonly represented by a pseudovector along the axis of rotation. The length of the vector gives the speed of rotation and the direction of the axis gives the direction of rotation according to the right-hand rule: right fingers curled in the direction of rotation and the right thumb pointing in the positive ...
Ads
related to: 3 coordinate axis math problems practice questions 3rd level mapgenerationgenius.com has been visited by 10K+ users in the past month