Search results
Results from the WOW.Com Content Network
The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7. The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1 ...
However, there is a formula for finding the number of relations that are simultaneously reflexive, symmetric, and transitive – in other words, equivalence relations – (sequence A000110 in the OEIS), those that are symmetric and transitive, those that are symmetric, transitive, and antisymmetric, and those that are total, transitive, and ...
Of particular importance are relations that satisfy certain combinations of properties. A partial order is a relation that is reflexive, antisymmetric, and transitive, [3] an equivalence relation is a relation that is reflexive, symmetric, and transitive, [4] a function is a relation that is right-unique and left-total (see below). [5] [6]
An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2] For continuous symmetric spherical, Mir M. Ali gave the following definition.
The converse is not true: most directed graphs are neither reflexive nor transitive. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph.
One supposed problem with SMAPE is that it is not symmetric since over- and under-forecasts are not treated equally. The following example illustrates this by applying the second SMAPE formula: Over-forecasting: A t = 100 and F t = 110 give SMAPE = 4.76%; Under-forecasting: A t = 100 and F t = 90 give SMAPE = 5.26%.