Search results
Results from the WOW.Com Content Network
Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
The first part of Zeckendorf's theorem (existence) can be proven by induction. For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1. If n is a Fibonacci number then there is nothing to prove. Otherwise there exists j such that F j < n < F j + 1 .
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
Recursion allows direct implementation of functionality defined by mathematical induction and recursive divide and conquer algorithms. Here is an example of a recursive function in C/C++ to find Fibonacci numbers:
A quick proof of Cassini's identity may be given (Knuth 1997, p. 81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the n th power of a matrix with determinant −1:
In contrast, e.g. the property 0<=i && i<=n is a loop invariant for both the original and the optimized program, but is not part of the code, hence it doesn't make sense to speak of "moving it out of the loop". Loop-invariant code may induce a corresponding loop-invariant property.
In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .