Search results
Results from the WOW.Com Content Network
From the quadratic velocity term = (+) = can be seen that there are two waves travelling in opposite directions + and are possible, hence results the designation “two-way wave equation”. It can be shown for plane longitudinal wave propagation that the synthesis of two one-way wave equations leads to a general two-way wave equation.
In dispersive media the phase velocity is not necessarily the same as the group velocity. The phase velocity varies with frequency. The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the ...
The equation says the matter wave frequency in vacuum varies with wavenumber (= /) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( ℏ ω 0 = m 0 c 2 {\displaystyle \hbar \omega _{0}=m_{0}c^{2}} ) and a quadratic part due to kinetic energy.
In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m −1 ).
Using two formulas from special relativity, one for the relativistic mass energy and one for the relativistic momentum = = = = allows the equations for de Broglie wavelength and frequency to be written as = = = =, where = | | is the velocity, the Lorentz factor, and the speed of light in vacuum.
Kinematic wave can be described by a simple partial differential equation with a single unknown field variable (e.g., the flow or wave height, ) in terms of the two independent variables, namely the time and the space with some parameters (coefficients) containing information about the physics and geometry of the flow. In general, the wave can ...
For the shown case, a bichromatic group of gravity waves on the surface of deep water, the group velocity is half the phase velocity. In this example, there are 5 + 3 / 4 waves between two wave group nodes in space, while there are 11 + 1 / 2 waves between two wave group nodes in time.
The Hamilton–Jacobi equation is a formulation of mechanics in which the motion of a particle can be represented as a wave. In this sense, it fulfilled a long-held goal of theoretical physics (dating at least to Johann Bernoulli in the eighteenth century) of finding an analogy between the propagation of light and the motion of a particle.