Ads
related to: simplify fraction variables practice sheet 3rd formteacherspayteachers.com has been visited by 100K+ users in the past month
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Assessment
Search results
Results from the WOW.Com Content Network
The rule of three [1] was a historical shorthand version for a particular form of cross-multiplication that could be taught to students by rote. It was considered the height of Colonial maths education [ 2 ] and still figures in the French national curriculum for secondary education, [ 3 ] and in the primary education curriculum of Spain.
For example, in the fraction 3 / 4 , the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3 / 4 of a cake. Fractions can be used to represent ratios and division. [1]
By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets
Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x ( x + 1)( x + 2) – namely x = 0 , x = −1 , and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.
Using the preceding decomposition inductively one gets fractions of the form , with < = , where G is an irreducible polynomial. If k > 1 , one can decompose further, by using that an irreducible polynomial is a square-free polynomial , that is, 1 {\displaystyle 1} is a greatest common divisor of the polynomial and its derivative .
Ads
related to: simplify fraction variables practice sheet 3rd formteacherspayteachers.com has been visited by 100K+ users in the past month