enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    At Mach 0.85 and 0.7 lift coefficient, a wing loading of 50 lb/sq ft (240 kg/m 2) can reach a structural limit of 7.33g up to 15,000 feet (4,600 m) and then decreases to 2.3g at 40,000 feet (12,000 m). With a wing loading of 100 lb/sq ft (490 kg/m 2) the load factor is twice smaller and barely reaches 1g at 40,000 ft (12,000 m). [15]

  3. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...

  4. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    There are several standards for determining the weight of an aircraft used to calculate the thrust-to-weight ratio range. ... max. take-off load (kg) 36,741 30,845 ...

  5. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    Structural: A long wing has higher bending stress for a given load than a short one and therefore requires higher structural-design (architectural and/or material) specifications. Also, longer wings may have some torsion for a given load, and in some applications this torsion is undesirable (e.g. if the warped wing interferes with aileron effect).

  6. Canard (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Canard_(aeronautics)

    A design approach used by Burt Rutan is a high aspect ratio canard with higher lift coefficient (the wing loading of the canard is between 1.6 and 2 times the wing one) and a canard airfoil whose lift coefficient slope is non-linear (nearly flat) between 14° and 24°. [36] Another stabilisation parameter is the power effect.

  7. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    In the definition of load factor, the lift is not simply that one generated by the aircraft's wing, instead it is the vector sum of the lift generated by the wing, the fuselage and the tailplane, [2]: 395 or in other words it is the component perpendicular to the airflow of the sum of all aerodynamic forces acting on the aircraft.

  8. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  9. Wing-shape optimization - Wikipedia

    en.wikipedia.org/wiki/Wing-shape_optimization

    Wing-shape optimization is by nature an iterative process. First, a baseline wing design is chosen to begin the process with; this is usually the wing created by aerospace engineers. This wing is assumed to be reasonably close to a best-fit design from the engineers. The next step is to model the wing shape and structure.