Search results
Results from the WOW.Com Content Network
where is the set of square numbers. A subject that has received a fair amount of study is that of sets with small doubling , where the size of the set A + A {\displaystyle A+A} is small (compared to the size of A {\displaystyle A} ); see for example Freiman's theorem .
Dynamic set structures typically add: create(): creates a new, initially empty set structure. create_with_capacity(n): creates a new set structure, initially empty but capable of holding up to n elements. add(S,x): adds the element x to S, if it is not present already. remove(S, x): removes the element x from S, if it is present.
The set of all possible values of a sum type is the set-theoretic sum, i.e., the disjoint union, of the sets of all possible values of its variants. Enumerated types are a special case of sum types in which the constructors take no arguments, as exactly one value is defined for each constructor.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
The set of pairwise sums is A + A = {a + b : a,b ∈ A} and is called the sumset of A. The set of pairwise products is A · A = {a · b : a,b ∈ A} and is called the product set of A; it is also written AA. The theorem is a version of the maxim that additive structure and multiplicative structure cannot coexist.
If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets (where k is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function (the terms