Search results
Results from the WOW.Com Content Network
In number theory, Vieta jumping, also known as root flipping, is a proof technique. It is most often used for problems in which a relation between two integers is given, along with a statement to prove about its solutions. In particular, it can be used to produce new solutions of a quadratic Diophantine equation from known ones.
Vieta's formulas can be proved by considering the equality + + + + = () (which is true since ,, …, are all the roots of this polynomial), expanding the products in the right-hand side, and equating the coefficients of each power of between the two members of the equation.
Quadratic function#Upper bound on the magnitude of the roots; Real-root isolation – Methods for locating real roots of a polynomial; Root-finding of polynomials – Algorithms for finding zeros of polynomials; Square-free polynomial – Polynomial with no repeated root; Vieta's formulas – Relating coefficients and roots of a polynomial
In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points .
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
The formula can be derived as a telescoping product of either the areas or perimeters of nested polygons converging to a circle. Alternatively, repeated use of the half-angle formula from trigonometry leads to a generalized formula, discovered by Leonhard Euler, that has Viète's formula as a special case. Many similar formulas involving nested ...
Each coordinate of the intersection points of two conic sections is a solution of a quartic equation. The same is true for the intersection of a line and a torus.It follows that quartic equations often arise in computational geometry and all related fields such as computer graphics, computer-aided design, computer-aided manufacturing and optics.