Search results
Results from the WOW.Com Content Network
Working Load Limit (WLL) is the maximum working load designed by the manufacturer. This load represents a force that is much less than that required to make the lifting equipment fail or yield. The WLL is calculated by dividing MBL by a safety factor (SF).
Lifting equipment can be assigned a Working Load Limit (WLL) in the interests of avoiding failure; Working Load Limit is calculated by dividing the Minimum Breaking Load of the equipment by a safety factor. [5] WLL as a concept is not restricted to lifting, being also relevant for mooring ropes. [6]
A crane's rated load is its Safe Working Load (SWL) and the design load (DL) is, (p 90) [1] = The dynamic lift factor for offshore cranes in the range 10 kN < SWL ≤ 2500 kN is not less than =.(p 84) [1] Thus for a crane with a SWL of 2000 kN (~200 tonne) its design load is not less than, = = The minimum breaking load (MBL) for the combined capacity of reeves of a steel wire hoisting rope ...
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...
In engineering, the ultimate load [1] is a statistical figure used in calculations, and should (hopefully) never actually occur. Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed factors of safety).
In USA structural engineering construction, allowable stress design (ASD) has not yet been completely superseded by limit state design except in the case of Suspension bridges, which changed from allowable stress design to limit state design in the 1960s. Wood, steel, and other materials are still frequently designed using allowable stress ...
Engineering tolerance is the permissible limit or limits of variation in: a physical dimension; a measured value or physical property of a material, manufactured object, system, or service; other measured values (such as temperature, humidity, etc.);