enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS ). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a ).

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.

  4. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    More generally, an a-by-b rectangle can be covered with square tiles of side length c only if c is a common divisor of a and b. For example, a 24-by-60 rectangular area can be divided into a grid of: 1-by-1 squares, 2-by-2 squares, 3-by-3 squares, 4-by-4 squares, 6-by-6 squares or 12-by-12 squares.

  5. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    s is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n; a deficient number is greater than the sum of its proper divisors; that is, s(n) < n; a perfect number equals the sum of its proper divisors; that is, s(n) = n; an abundant number is lesser than the sum of its proper divisors; that is, s(n) > n

  6. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    T(n) is the sum of the first n triangular numbers, with T(0) = 0 (empty sum). A000292: Square pyramidal numbers: 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, ... ⁠ n(n + 1)(2n + 1) / 6 ⁠: The number of stacked spheres in a pyramid with a square base. A000330: Cube numbers n 3: 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, ... n 3 = n × n × n ...

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Since the Diophantus identity implies that the product of two integers each of which can be written as the sum of two squares is itself expressible as the sum of two squares, by applying Fermat's theorem to the prime factorization of any positive integer n, we see that if all the prime factors of n congruent to 3 modulo 4 occur to an even ...

  8. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!

  9. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).