enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    A convex function of a martingale is a submartingale, by Jensen's inequality. For example, the square of the gambler's fortune in the fair coin game is a submartingale (which also follows from the fact that X n 2 − n is a martingale). Similarly, a concave function of a martingale is a supermartingale.

  3. Martingale difference sequence - Wikipedia

    en.wikipedia.org/wiki/Martingale_difference_sequence

    By construction, this implies that if is a martingale, then = will be an MDS—hence the name. The MDS is an extremely useful construct in modern probability theory because it implies much milder restrictions on the memory of the sequence than independence , yet most limit theorems that hold for an independent sequence will also hold for an MDS.

  4. Risk-neutral measure - Wikipedia

    en.wikipedia.org/wiki/Risk-neutral_measure

    Risk-neutral measures make it easy to express the value of a derivative in a formula. Suppose at a future time a derivative (e.g., a call option on a stock) pays units, where is a random variable on the probability space describing the market.

  5. Doob's martingale convergence theorems - Wikipedia

    en.wikipedia.org/wiki/Doob's_martingale...

    The condition that the martingale is bounded is essential; for example, an unbiased random walk is a martingale but does not converge. As intuition, there are two reasons why a sequence may fail to converge. It may go off to infinity, or it may oscillate. The boundedness condition prevents the former from happening.

  6. Itô calculus - Wikipedia

    en.wikipedia.org/wiki/Itô_calculus

    The following result allows to express martingales as Itô integrals: if M is a square-integrable martingale on a time interval [0, T] with respect to the filtration generated by a Brownian motion B, then there is a unique adapted square integrable process on [0, T] such that = + almost surely, and for all t ∈ [0, T] (Rogers & Williams 2000 ...

  7. Doob martingale - Wikipedia

    en.wikipedia.org/wiki/Doob_martingale

    In the mathematical theory of probability, a Doob martingale (named after Joseph L. Doob, [1] also known as a Levy martingale) is a stochastic process that approximates a given random variable and has the martingale property with respect to the given filtration. It may be thought of as the evolving sequence of best approximations to the random ...

  8. Doléans-Dade exponential - Wikipedia

    en.wikipedia.org/wiki/Doléans-Dade_exponential

    Stochastic exponential of a local martingale appears in the statement of Girsanov theorem. Criteria to ensure that the stochastic exponential E ( X ) {\displaystyle {\mathcal {E}}(X)} of a continuous local martingale X {\displaystyle X} is a martingale are given by Kazamaki's condition , Novikov's condition , and Beneš's condition .

  9. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...