Search results
Results from the WOW.Com Content Network
The kinetic theory of gases deals not only with gases in thermodynamic equilibrium, but also very importantly with gases not in thermodynamic equilibrium. This means using Kinetic Theory to consider what are known as "transport properties", such as viscosity, thermal conductivity, mass diffusivity and thermal diffusion.
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.
In other words, the configuration of particle A in state 1 and particle B in state 2 is different from the case in which particle B is in state 1 and particle A is in state 2. This assumption leads to the proper (Boltzmann) statistics of particles in the energy states, but yields non-physical results for the entropy, as embodied in the Gibbs ...
The Boltzmann constant (k B or k) is the proportionality factor that relates the average relative thermal energy of particles in a gas with the thermodynamic temperature of the gas. [2] It occurs in the definitions of the kelvin (K) and the gas constant , in Planck's law of black-body radiation and Boltzmann's entropy formula , and is used in ...
By the equipartition theorem, internal energy per mole of gas equals c v T, where T is absolute temperature and the specific heat at constant volume is c v = (f)(R/2). R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur.
The thermal motions of the atoms or molecules in a gas are allowed to move freely, and the interactions between the two (the gas and the atoms/molecules) can be neglected. In physics , a partition function describes the statistical properties of a system in thermodynamic equilibrium .
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...