enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Maclaurin series of the logarithm function ⁡ (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

  3. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    The most basic type of convergence for a sequence of functions (in particular, it does not assume any topological structure on the domain of the functions) is pointwise convergence. It is defined as convergence of the sequence of values of the functions at every point.

  4. Function series - Wikipedia

    en.wikipedia.org/wiki/Function_series

    There exist many types of convergence for a function series, such as uniform convergence, pointwise convergence, and convergence almost everywhere.Each type of convergence corresponds to a different metric for the space of functions that are added together in the series, and thus a different type of limit.

  5. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    It shows that the family of continuous functions whose Fourier series converges at a given x is of first Baire category, in the Banach space of continuous functions on the circle. So in some sense pointwise convergence is atypical , and for most continuous functions the Fourier series does not converge at a given point.

  6. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    A generalization of the absolute convergence of a series, is the absolute convergence of a sum of a function over a set. We can first consider a countable set X {\displaystyle X} and a function f : X → R . {\displaystyle f:X\to \mathbb {R} .}

  7. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    A classic example is the alternating harmonic series given by + + = = +, which converges to ⁡ (), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem .

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under consideration.

  9. Normal convergence - Wikipedia

    en.wikipedia.org/wiki/Normal_convergence

    As well, normal convergence of a series is different from norm-topology convergence, i.e. convergence of the partial sum sequence in the topology induced by the uniform norm. Normal convergence implies norm-topology convergence if and only if the space of functions under consideration is complete with respect to the uniform norm. (The converse ...