Search results
Results from the WOW.Com Content Network
List of refractive indices. Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics) and applied in materials science. The optical properties of matter include: Refractive index. Dispersion. Transmittance and Transmission coefficient. Absorption.
Properties. Soda–lime glass (for containers) [2] Borosilicate (low expansion, similar to Pyrex, Duran) Glass wool (for thermal insulation) Special optical glass (similar to. Lead crystal) Fused silica. Germania glass. Germanium selenide glass.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
Refractive index. In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refracted, when entering a material. This is described by Snell's law of refraction, n1 ...
A table of coefficients for common optical materials is shown below: Material A B (μm 2) Fused silica: 1.4580: 0.00354 Borosilicate glass BK7: 1.5046: 0.00420
Optical glass refers to a quality of glass suitable for the manufacture of optical systems such as optical lenses, prisms or mirrors.Unlike window glass or crystal, whose formula is adapted to the desired aesthetic effect, optical glass contains additives designed to modify certain optical or mechanical properties of the glass: refractive index, dispersion, transmittance, thermal expansion and ...
Within optics, dispersion is a property of telecommunication signals along transmission lines (such as microwaves in coaxial cable) or the pulses of light in optical fiber. In optics, one important and familiar consequence of dispersion is the change in the angle of refraction of different colors of light, [2] as seen in the spectrum produced ...