enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    Transfer function. Function specifying the behavior of a component in an electronic or control system. In engineering, a transfer function (also known as system function[1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2][3][4] It is widely used in ...

  3. Extra element theorem - Wikipedia

    en.wikipedia.org/wiki/Extra_element_theorem

    Extra element theorem. The Extra Element Theorem (EET) is an analytic technique developed by R. D. Middlebrook for simplifying the process of deriving driving point and transfer functions for linear electronic circuits. [1] Much like Thévenin's theorem, the extra element theorem breaks down one complicated problem into several simpler ones.

  4. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] (). This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).

  5. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    Overview. The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:

  6. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    Component transfer function For a two-terminal component (i.e. one-port component), the current and voltage are taken as the input and output and the transfer function will have units of impedance or admittance (it is usually a matter of arbitrary convenience whether voltage or current is considered the input).

  7. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    in the open left half of the complex plane for continuous time, when the Laplace transform is used to obtain the transfer function. inside the unit circle for discrete time, when the Z-transform is used. The difference between the two cases is simply due to the traditional method of plotting continuous time versus discrete time transfer functions.

  8. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    The transfer function for a first-order process with dead time is = + (), where k p is the process gain, τ p is the time constant, θ is the dead time, and u(s) is a step change input. Converting this transfer function to the time domain results in

  9. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    The function is defined by the three poles in the left half of the complex frequency plane. Log density plot of the transfer function () in complex frequency space for the third-order Butterworth filter with =1. The three poles lie on a circle of unit radius in the left half-plane.