Search results
Results from the WOW.Com Content Network
A free water clearance of zero means the kidney is producing urine isosmotic with respect to the plasma. Values greater than zero imply that the kidney is producing dilute urine through the excretion of solute-free water. Values less than zero imply that the kidney is conserving water (likely under the influence of antidiuretic hormone, ADH ...
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
The water available is often determined by means of a water flow test, in which one or more fire hydrants are opened and the water pressures and flowrate are measured. Some municipal water jurisdictions may provide an estimate of available water supplies based on hydraulic models.
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.
This can only occur in a smooth channel that does not experience any changes in flow, channel geometry, roughness or channel slope. During uniform flow, the flow depth is known as normal depth (yn). This depth is analogous to the terminal velocity of an object in free fall, where gravity and frictional forces are in balance (Moglen, 2013). [3]
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]
The hydraulic radius is one of the properties of a channel that controls water discharge. It also determines how much work the channel can do, for example, in moving sediment. All else equal, a river with a larger hydraulic radius will have a higher flow velocity, and also a larger cross sectional area through which that faster water can travel.