enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interplanetary magnetic field - Wikipedia

    en.wikipedia.org/wiki/Interplanetary_magnetic_field

    A video simulation of Earth's magnetic field interacting with the (solar) interplanetary magnetic field (IMF) The plasma in the interplanetary medium is also responsible for the strength of the Sun's magnetic field at the orbit of the Earth being over 100 times greater than originally anticipated.

  3. Plasma sheet - Wikipedia

    en.wikipedia.org/wiki/Plasma_sheet

    Artistic representation of Earth's magnetosphere. The plasma sheet is highlighted in yellow. In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm 3 versus 0.01-0.02 in the lobes) [citation needed] hot plasma and lower magnetic field located on the magnetotail and near the equatorial plane, between the magnetosphere's north and south lobes.

  4. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.

  5. Heliospheric current sheet - Wikipedia

    en.wikipedia.org/wiki/Heliospheric_current_sheet

    The heliospheric current sheet, or interplanetary current sheet, is a surface separating regions of the heliosphere where the interplanetary magnetic field points toward and away from the Sun. [1] A small electrical current with a current density of about 10 −10 A /m 2 flows within this surface, forming a current sheet confined to this surface.

  6. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.

  7. Dynamo theory - Wikipedia

    en.wikipedia.org/wiki/Dynamo_theory

    The current density J is itself the result of the magnetic field according to Ohm's law. Again, due to matter motion and current flow, this is not necessarily the field at the same place and time. However these relations can still be used to deduce orders of magnitude of the quantities in question.

  8. Force-free magnetic field - Wikipedia

    en.wikipedia.org/wiki/Force-free_magnetic_field

    In plasma physics, a force-free magnetic field is a magnetic field in which the Lorentz force is equal to zero and the magnetic pressure greatly exceeds the plasma pressure such that non-magnetic forces can be neglected. For a force-free field, the electric current density is either zero or parallel to the magnetic field.

  9. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    It only holds for high temperatures and weak magnetic fields. As the derivations below show, the magnetization saturates in the opposite limit of low temperatures and strong fields. If the Curie constant is null, other magnetic effects dominate, like Langevin diamagnetism or Van Vleck paramagnetism.