Search results
Results from the WOW.Com Content Network
Grandi's series. In mathematics, the infinite series 1 − 1 + 1 − 1 + ⋯, also written. is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that the sequence of partial sums of the series does not converge.
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
Demonstration of 2 / 3 via a zero-value game. A slight rearrangement of the series reads + + =. The series has the form of a positive integer plus a series containing every negative power of two with either a positive or negative sign, so it can be translated into the infinite blue-red Hackenbush string that represents the surreal number 1 / 3 :
1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 2 + 1 4 + 1 8 + 1 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...
It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) : n ∈ , are irrational. [1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ (5), ζ (7), ζ (9), or ζ ...
1/4 + 1/16 + 1/64 + 1/256 + ⋯. Archimedes' figure with a = 3 4 . In mathematics, the infinite series 1 4 + 1 16 + 1 64 + 1 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1] As it is a geometric series ...